Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam
نویسندگان
چکیده
With the massive consumption of fossil fuels and its detrimental impact on the environment, methods of generating clean power are urgent. Hydrogen is an ideal carrier for renewable energy; however, hydrogen generation is inefficient because of the lack of robust catalysts that are substantially cheaper than platinum. Therefore, robust and durable earth-abundant and cost-effective catalysts are desirable for hydrogen generation from water splitting via hydrogen evolution reaction. Here we report an active and durable earth-abundant transition metal dichalcogenide-based hybrid catalyst that exhibits high hydrogen evolution activity approaching the state-of-the-art platinum catalysts, and superior to those of most transition metal dichalcogenides (molybdenum sulfide, cobalt diselenide and so on). Our material is fabricated by growing ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. This advance provides a different pathway to design cheap, efficient and sizable hydrogen-evolving electrode by simultaneously tuning the number of catalytic edge sites, porosity, heteroatom doping and electrical conductivity.
منابع مشابه
An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation
The electroreduction of water for sustainable hydrogen production is a critical component of several developing clean-energy technologies, such as water splitting and fuel cells. However, finding a cheap and efficient alternative catalyst to replace currently used platinum-based catalysts is still a prerequisite for the commercialization of these technologies. Here we report a robust and highly...
متن کاملSelf-Supported Ni(P, O)x·MoOx Nanowire Array on Nickel Foam as an Efficient and Durable Electrocatalyst for Alkaline Hydrogen Evolution
Earth-abundant and low-cost catalysts with excellent electrocatalytic hydrogen evolution reaction (HER) activity in alkaline solution play an important role in the sustainable production of hydrogen energy. In this work, a catalyst of Ni(P, O)x·MoOx nanowire array on nickel foam has been prepared via a facile route for efficient alkaline HER. Benefiting from the collaborative advantages of Ni(P...
متن کاملEfficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics
Various platinum-free electrocatalysts have been explored for hydrogen evolution reaction in acidic solutions. However, in economical water-alkali electrolysers, sluggish water dissociation kinetics (Volmer step) on platinum-free electrocatalysts results in poor hydrogen-production activities. Here we report a MoNi4 electrocatalyst supported by MoO2 cuboids on nickel foam (MoNi4/MoO2@Ni), which...
متن کاملThe effect of concentration and time of hydrothermal process on the fluorescent property of Molybdenum Diselenide nano-layers
The group of 2D materials contains almost all the elements of the periodic table. In contrast to the graphene sheet, they are abundant, this creates a variety of electronic properties including metals, semimetals, insulators and semiconductors. Band gaps of these materials are direct or indirect by ranging from ultraviolet to infrared, for this reason, have received much attention for nanoelect...
متن کاملMultiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production
Hydrogen production through water splitting has been considered as a green, pure and high-efficient technique. As an important half-reaction involved, hydrogen evolution reaction is a complex electrochemical process involving liquid-solid-gas three-phase interface behaviour. Therefore, new concepts and strategies of material design are needed to smooth each pivotal step. Here we report a multis...
متن کامل